

Journal of Organometallic Chemistry 484 (1994) 93-96

Synthesis and spectra of novel diorganotellurides and diorganoditellurides. Potential polydentate hybrid organotellurium ligands

Vinod Srivastava, Raman Batheja, Ajai K. Singh *

Department of Chemistry, Indian Institute of Technology, New Dehli 110016, India

Received 28 February 1994

Abstract

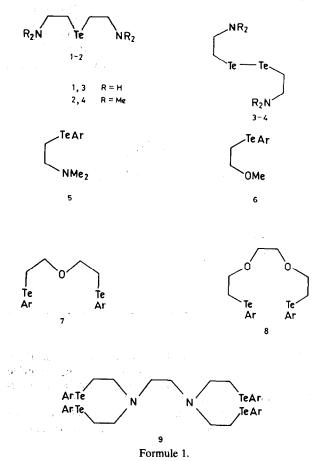
Nine new potential polydentate hybrid organotellurium ligands, namely bis(2-aminoethyl)telluride and ditelluride (1,3), bis(2-dimethylaminoethyl)telluride and ditelluride (2,4), 2-(dimethylamino)ethyl aryl telluride (5), 2-methoxyethyl aryl telluride (6), bis(2-aryltelluroethyl)ether (7), 1,2-bis(2-aryltelluroethoxy)ethane (8) and N,N,N',N'-tetrakis(2-aryltelluroethyl)ethane-1,2-diamine (9), (where aryl = 4-MeO-C₆H₄), have been made in 60-85% yield by the reaction of Na₂Te/Na₂Te₂ or ArTe⁻Na⁺ with the appropriate organic halide. Compounds 6-8 cannot be stored for more than a week and undergo aerial oxidation to give R₂TeO species. All the compounds 1-9 have been characterized by molecular weight determination, elemental analyses and ¹H NMR and ¹³C{¹H} spectroscopy.

Keywords: Tellurium; Polydentate ligands; Diorganotellurides; Diorganoditellurides

1. Introduction

There is much interest in the chemistry of polydentate tellurium-containing ligands, including hybrid species and thus five reviews [1-5] on the subject have appeared in the last decade. The main reasons for this interest lie in the possible applications of the species in chemical vapour deposition processes [6] for the thin film fabrication of new electronic materials such as II-IV semiconductors and in the fact that tellurium has an isotope of half integral spin with reasonable natural abundance suitable for NMR investigations [5,7]. Thus, a metal-tellurium bond in solution can be more readily studied than the corresponding metalsulphur bond. We have recently made several novel multidentate hybrid organotellurium ligands [4,8–10] and in continuation of these studies we thought it worthwhile to synthesize the diorgano tellurides and ditellurides 1-9 which could be used as hybrid organ-

* Corresponding author.


otellurium ligands. The synthesis and spectra of these tellurides and ditellurides are the subject of the present paper. To the best of our knowledge the syntheses of compounds 1-9 have not been reported previously.

2. Experimental details

Published methods were used to synthesize bis(4methoxyphenyl)ditelluride [11], disodium telluride [12], disodium ditelluride [12] and N,N,N',N'-tetrakis[2chloroethyl]ethane-1,2-diamine [13]. 2-Bromoethylamine monohydrobromide, 2-dimethylamino ethylchloride monohydrobromide, 2-chloroethyl methyl ether, bis(2-chloroethyl)ether and 1,2-bis(2-chloroethoxy)ethane were used as received from Aldrich or Fluka. Elemental analysis and physical measurements were carried out as described previously [14].

2.1. Synthesis of 1-4

The colourless suspension of Na_2Te (10 mmol) or deep purple solution of Na_2Te_2 (10 mmol) made by the

published method [12] was mixed under nitrogen with a solution of $BrCH_2CH_2NH_2$ or $ClCH_2CH_2NMe_2$ (20 mmol) in 5 cm³ of ethanol and the mixture was re-

Table 1

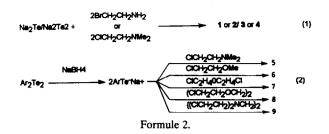
Physical properties and elemental analyses of tellurides and ditellurides (1-9)

fluxed for 0.5 h. It was then cooled to 25° C and added to 100 cm³ of water. The product was extracted into diethyl ether isolated as viscous liquids by evaporating off the diethyl ether.

2.2. Synthesis of 5-8

A colourless solution of 4 mmol of $[4-\text{MeOC}_6\text{H}_4$ Te]⁻[Na]⁺ generated in situ in 35 cm³ of 85/15 EtOH-H₂O by the published method [8,9,14] was mixed with a solution of the relevant organic halide (4 mmol for 5 and 6 but 2 mmol for 7 and 8 in 5 cm³ of ethanol). The mixture was refluxed for 2–3 h then cooled to 25°C and added to 200 cm³ of water. The products were extracted into diethylether and isolated as viscous liquids by evaporation of the ether.

2.3. Synthesis of 9


A solution of N,N,N',N'-tetrakis[2-chloroethyl] ethane-1,2-diamine dihydrochloride [13] (1 mmol) in ethanol was added under nitrogen to [4-MeOC₆H₄ Te⁻Na⁺] (4 mmol) dropwise with refluxing under nitrogen atmosphere. After complete addition the reaction mixture was refluxed further for 2 h and cooled to 25°C. The 9 was extracted from the reaction mixture into CH₂Cl₂ and obtained as off-white solid by evaporating off the solvent.

3. Results and discussion

Compounds 1-9 were obtained from the reactions shown in Eqs. (1) and (2). The yields were good (60-

Telluride/	Colour and	Yield (%)	Analyses: F	Mol wt			
Ditelluride	physical state		C	Н	N	Те	Found (Calc.)
1	Orange yellow	65	22.03	5.27	13.13	58.50	200.0
	liguid		(22.26)	(5.56)	(12.98)	(59.18)	(215.6)
2	Yellow liquid	70	35.08	7.01	10.52	46.00	265.0
··· · ·			(35.39)	(7.36)	(10.30)	(46.98)	(271.6)
3	· Red liquid	60	14.28	3.62	8.39	73.50	340.0
			(13.98)	(3.90)	(8.15)	(74.35)	(343.2)
4	Red liquid	60	23.69	4.89	7.23	62.80	390.0
			(24.04)	(5.01)	(7.01)	(63.92)	(399.2)
5	Pale yellow	80	43.28	5.28	4.78	41.00	300.0
	liquid		(43.05)	(5.59)	(4.56)	(41.62)	(306.6)
6	Pale yellow	85	40.96	4.93	-	42.90	291.0
	liquid		(40.87)	(4.26)	-	(43.46)	(293.6)
7	Pale yellow	75	40.53	4.52	_	46.80	535.0
	liquid		(39.91)	(4.06)	-	(47.15)	(541.2)
8	Pale yellow	70	40.88	4.78	_	43.00	580.5
	liqud		(41.01)	(4.49)	-	(43.60)	(585.2)
9	Off white	68	40.57	4.07	2.79	45.80	1085.0
	solid		(41.21)	(4.33)	(2.52)	(46.13)	(1106.4)
· · ·	(m.p. 100–102°C) ^a						

^a Determined in capillary tube

85%). However, compounds **6–8** begin to decompose after storage for 4–5 days and undergo aerial oxidation to give the compounds R_2 TeO, which can be reduced with hydrazine to regenerate **6–8**. On storage for a month in air, however, elemental tellurium separates out. The syntheses of ditellurides **3** and **4** are of significance because very few functionalized ditellurides [1–4] capable of forming chelates have been reported previously. Moreover, these ditellurides can be readily reduced by NaBH₄ to give the corresponding hybrid organotellurium anions [R_2 NCH₂CH₂CH₂Te]⁻ (the use of a functionalized organotellurolate as a ligand has not so far been investigated [1-3]). All the organotellurides and diorganoditellurides (1-9) were characterized by elemental analysis, molecular weight determination and ¹H and ¹³C¹H NMR spectroscopy. Data with assignments are shown in Tables 1-3. The assignments of $^{13}C{^1H}$ NMR spectra are based on previous analyses [15]. In the ${}^{13}C{}^{1}H$ NMR spectrum of 6 the OMe signal appearing at the low field appears to come from the OMe attached to the aromatic ring since the alkyl group would have the larger +I effect. The ¹H NMR spectrum of 7 exhibits well resolved signals for OCH₂ and TeCH₂ in contrast to its nitrogen analogue [14], $HN(CH_2CH_2TeAr)_2$, this is attributable to the higher electronegativity of oxygen than of nitrogen. There is similar resolution in the ¹H NMR spectrum of $CH_3N(CH_2CH_2TeAr)_2$. Owing to the weaker coordinating ability of ether centres relative to alkyl amine centres it is likely that 7 will coordinate through two tellurium atoms only to form a large size chelate ring suitable for connecting two trans sites of a square

¹ H NMR da						
Telluride/ ditelluride	Chemical shift (δ , ppn					
	-CH ₂ -N-/	-CH ₂ -Te	NMe ₂ /	OMe of Ar	ArH o to Te	ArH m to Te
	-CH ₂ -O		$-NH_2/OMe$			
1	2.90-3.10(t, 4H)	2.65-2.80(t, 4H)	1.65(s, 4H)	-	. –	
2	← 2.29-3.06(m, 8H	\rightarrow	2.23(s, 12H)	-		-
3	← 2.62-3.41(m, 8H	i) →	1.44(s, 4H)	-	-	-
4	2.96-3.04(t, 4H)	2.68-2.72(t, 4H)	2.24(s, 12H)	-	-	
5	← 2.59-3.08(m, 4H	i) →	2.23(s, 6H)	3.79(s, 3H)	6.79-6.98(d, 2H)	7.79-7.87(d, 2H)
6	3.60-3.75(t, 2H)	2.89-3.04(t, 2H)	← 3.33(s, 6H)	\rightarrow	6.70-6.80(d, 2H)	7.60-7.73(d, 4H)
7	3.64-3.82(m, 10 H)	2.86-3.00(t, 4H)	-	merged with	6.69-6.70(d, 4H)	7.60-7.71(d, 4H)
				OCH ₂	· · · · · · · · · · · · · · · · · · ·	
8	3.53-3.82(m, 14H)	2.87-3.02(t, 4H)	_	merged with OCH ₂	6.68-6.76(d, 4H)	7.62-7.71(d, 4H)
9	2.76-3.03(m, 12H)	2.48(bs, 8H)	_	3.79(s, 12H)	6.70-6.78(d, 8H)	7.25-7.70(d, 8H)

^{bs} broad singlet

Table 3				
¹³ C{ ¹ H} NMR	data	for	1-9	

Telluride/ ditelluride	Chemical shift (δ , ppm), CDCl ₃ 2 3 -Te ¹ $\langle O \rangle$ 4										
	NMe ₂	OMe ^a	OMe ^b	OCH ₂	TeCH ₂	-NCH ₂ -	-NC ₂ H ₄ -N- -OC ₂ H ₄ -O-	C ₁	C ₂	C ₃	C4
1	-	-	-	-	8.2	43.4		-	-	_	_
2	44.3	-	-	_	0.3	60.6	-	_	-		_
3	-	-	_	-	10.4	44.4	_	_	_	_	_
4	44.3	-	-	_	4.8	60.8	-	_		_	_
5	44.5	-	54.6	_	8.1	60.0	-	100.7	140.1	114.5	159.0
6	-	54.8	57.8	73.4	7.9	-	-	99.8	140.1	114.8	159.5
7	-	_	54.7	71.2	8.1	-	-	99.7	140.4	114.7	159.3
8	-	-	54.6	69.4	8.0	-	72.0	99.8	140.3	114.7	159.3
9	-	_	52.4	_	8.2	58.6	55.0	101.3	140.4	114.9	159.3

^a Linked to CH₂CH₂Te ^b Linked to phenyl ring

complex of palladium(II) or platinum(II). A similar possibility exists for 8. The nitrogen analogue of 7 acts as a tridentate ligand in square planar platinum(II) complexes [10] and therefore appears to be unsuitable for the formation of large rings. Compound 9 appears to be the first example of a potentially hexadentate tellurium ligand. The phosphorus and arsenic analogues of 9 are known to form interesting copper(I) complexes [13]. There are also only very few examples of tetradentate tellurium ligands [4] and thus the synthesis of 8 in good yield is of significance in this context.

Acknowledgements

V.S. thanks CSIR (India) for the award of a Research Associateship. A.K.S. thanks the Department of Atomic Energy (India) for financial support in the form of a research project.

References

- [1] H.J. Gysling, Coord. Chem. Rev., 42 (1982) 113.
- [2] H.J. Gysling, in S. Patai and Z. Rapport (eds.), Chemistry of Organic Selenium and Tellurium Compounds, Wiley, New York, 1986, p. 815.
- [3] F.J. Berry, in G. Wilkinson, R.D. Gillard and J.A. McCleverty

(eds.), Comprehensive Coordination Chemistry, Pergamon, Oxford, 1987, p. 668.

- [4] A.K. Singh and V. Srivastava, J. Coord. Chem., 27 (1992) 237.
- [5] E.G. Hope and W. Levason, Coord. Chem. Rev., 122 (1993) 109.
- [6] S.M. Stuczynski, J.G. Brennan and M.L. Steigerwald, Inorg. Chem., 28 (1989) 4431 and references cited therein; J. Arnold, J.M. Walker, K.M. Yu, P.J. Bonasia, A.L. Seligson and E.D. Bourret, J. Cryst. Growth, 124 (1992) 647; H. Dumond, A. Marbeuf, J.E. Bouree and O. Gorochov, Mater. Sci. Eng., B17 (1993) 41; J.B. Mullin, D.J. Cole-Hamilton, D.V. Shenai-Khatkhate and P. Webb, UK Patent WO 8905293; Chem. Abstr. 112 (1990) 35288h.
- [7] T. Kemmitt, W. Levason and M. Webster, Inorg. Chem., 29 (1990) 692; T. Kemmitt and W. Levason, Inorg. Chem., 29 (1990) 731; H.M.K.K. Pathirana, A.W. Downs, W.R. McWhinnie and P. Gragner, Inorg. Chim. Acta, 143 (1988) 161; R.U. Kriss and D.W. Brown, Organometallics, 10 (1991) 3597; T. Kemmitt, W. levason, R.D. Oldroyd and M. Webster, Polyhedron, 11 (1992) 2165.
- [8] A.K. SIngh and V. Srivastava, Phosphorus, Sulfur, Silicon, 80 (1993) 95.
- [9] R. Batheja, S. Katiyar, V. Singh and A.K. Singh, Polyhedron, 13 (1994) 777.
- [10] J.E. Drake, J.H. Bailey, A.K. Singh and V. Srivastava, Acta Crystallogr., C49 (1993) 684.
- [11] R.A. Zingaro, N. Patragnani and J.V. Comasseto, in R.B. King and J.J. Eish (eds.), *Organometallic Synthesis*, Vol. 3, Elsevier, New York, 1986, p. 650.
- [12] M.M. Goodman and F.F. Knapp Jr., Organometallics, 2 (1983) 1106.
- [13] M.M. Taqui Khan, P. Paul, K. Venkatasubramaniam and S. Purohit, J. Chem. Soc., Dalton Trans., (1991) 3405.
- [14] A.K. Singh, V. Srivatava and B.L. Khandelwal, Polyhedron, 9 (1990) 857.
- [15] R.K. Chadha and J.M. Miller, J. Chem. Soc., Dalton Trans., (1982) 117.